skip to main content


Search for: All records

Creators/Authors contains: "Rajamani, Dhruv Kool"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, Reinforcement Learning (RL) techniques have seen significant progress in the robotics domain. This can be attributed to robust simulation frameworks that offer realistic environments to train. However, there is a lack of platforms which offer environments that are conducive to medical robotic tasks. Having earlier designed the Asynchronous Multibody Framework (AMBF) - a real-time dynamics simulator well-suited for medical robotics tasks, we propose an open source AMBF-RL (ARL) toolkit to assist in designing control algorithms for these robots, as well as a module to collect and parse expert demonstration data. We validate ARL by attempting to partially automate the task of debris removal on the da Vinci Research Kit (dVRK) Patient Side Manipulator (PSM) in simulation by calculating the optimal policy using both Deep Deterministic Policy Gradient (DDPG) and Hindsight Experience Replay (HER) with DDPG. The trained policies are successfully transferred onto the physical dVRK PSM and tested. Finally, we draw a conclusion from the results and discuss our observations of the experiments conducted. 
    more » « less
  2. null (Ed.)
    Over the past decade, Robot-Assisted Surgeries (RAS), have become more prevalent in facilitating successful operations. Of the various types of RAS, the domain of collaborative surgery has gained traction in medical research. Prominent examples include providing haptic feedback to sense tissue consistency, and automating sub-tasks during surgery such as cutting or needle hand-off - pulling and reorienting the needle after insertion during suturing. By fragmenting suturing into automated and manual tasks the surgeon could essentially control the process with one hand and also circumvent workspace restrictions imposed by the control interface present at the surgeon's side during the operation. This paper presents an exploration of a discrete reinforcement learning-based approach to automate the needle hand-off task. Users were asked to perform a simple running suture using the da Vinci Research Kit. The user trajectory was learnt by generating a sparse reward function and deriving an optimal policy using Q-learning. Trajectories obtained from three learnt policies were compared to the user defined trajectory. The results showed a root-mean-square error of [0.0044mm, 0.0027mm, 0.0020mm] in ℝ 3 . Additional trajectories from varying initial positions were produced from a single policy to simulate repeated passes of the hand-off task. 
    more » « less